NS102 Lecture 10

The distance ladder

News of the week

- No office hours on Thursday
- Lab this week: 1st week of geometry of the universe
- Thursday:
 - Shapley-Curtis debate
 - Original composition: car horn in G performed by Thao Thai

The Cosmological Distance Ladder

 $\frac{D}{200,000 \text{ AU}} = \frac{56}{p}$

seconds parallax

pc = seconds
pc parallax

$$\frac{D}{pc} = \frac{seconds}{parallax}$$

star	parallax ('')	distance (pc)	
α Centauri	0.75	1.3	
Barnard's star	0.5	2.0	
Sirius	0.4	2.5	
Altair	0.2	5.0	

The Cosmological Distance Ladder

For light!!!

Intensity =
$$\frac{\text{luminosity}}{\text{area}}$$

Luminosity property of source

Intensity depends on power and distance between source and detector (R)

luminosity Intensity = $4\pi R^2$

$$m_1 - m_2 = -2.5 \log(I_1/I_2)$$

$$m = \text{magnitude } I = \text{intensity}$$

"-" means smaller m is brighter!

Venus m = -4

Sirius m = -1.5

Naked eye limit m = 6

Binoculars m = 10

Pluto m = 15

Large telescope (visual) m = 20

Large telescope (photograph) m = 25

Large telescope (ccd) m = 30

The luminosity of nearby stars

Measure: intensity of light, I

$$I = \frac{L}{4\pi R^2}$$

If know distance (e.g., parallax) → luminosity

If know luminosity (standard candle) → distance

$$I = \frac{L}{4\pi R^2}$$

Measured					
star	parallax (")	distance (pc)	apparent magnitude	luminosity (solar)	
a Centauri	0.75	1.3	0	1.5	
Barnard's star	0.5	2.0	9.5	0.0005	
Sirius	0.4	2.5	-1.5	25	
Altair	0.2	5.0	8.0	10	
Canopus	0.003	330	- 0.7	200,000	
Arcturus	0.1	10	O	90	
Betelaeuse	0.01	100	0.5	14.000	

46 pc

They have different apparent brightness They have different colors They move They change in brightness

COLORS OF THE RAINBOW:

ROY-G-BIV

Ejnar Hertzsprung (1873-1967)

Henry Russell (1877-1957)

Hyades HR diagram

Schematic Hertzsprung-Russell Diagram

Schematic Hertzsprung-Russell Diagram

$$m_H - m_E = -2.5 \log(I_H/I_E)$$

 $-2.5 = -2.5 \log(I_H/I_E)$
 $1 = \log(I_H/I_E)$
 $10 = I_H/I_E$

$$I_{H} = \frac{\text{Luminosity}_{H}}{4\pi R_{H}^{2}} \qquad I_{E} = \frac{\text{Luminosity}_{E}}{4\pi R_{E}^{2}}$$

$$\frac{I_{H}}{I_{E}} = \frac{R_{E}^{2}}{R_{H}^{2}} \qquad 10 = \frac{R_{E}^{2}}{R_{H}^{2}} \qquad 3 = \frac{R_{E}}{R_{H}}$$

Distances to other clusters

- Construct H-R diagram for cluster
- Measure ∆m compared to HR diagram for Hyades
- Compute distance in terms of distance to Hyades
- How far can you go?
- Say most distant open observable cluster is Lastades

$$m_H - m_L = -2.5 \log(I_H/I_L)$$

 $-10 = -2.5 \log(I_H/I_L)$
 $4 = \log(I_H/I_L)$
 $10^4 = I_H/I_L$

$$10^4 = I_H/I_L$$

$$I_{H} = \frac{\text{Luminosity}_{H}}{4\pi R_{H}^{2}}$$
 $I_{L} = \frac{\text{Luminosity}_{L}}{4\pi R_{L}^{2}}$

$$\frac{I_H}{I_L} = \frac{R_L^2}{R_H^2} \quad 10^4 = \frac{R_L^2}{R_H^2} \quad 100 = \frac{R_L}{R_H} \quad 4 \,\text{kpc} = R_L$$

The Cosmological Distance Ladder

Main sequence stars are not extremely bright...
 we need brighter "standard candle"

Intensity =
$$\frac{\text{Luminosity}}{4\pi R^2}$$

- RR Lyrae stars found in distant clusters we know the distance to via H-R fitting.
- RR Lyrae stars are identified because their light output changes regularly on a time scale of half to one day.
- They are brighter than the sun by about a factor of 100 and are <u>standard candles</u>. Can see farther away and use as standard candle.

The Cosmological Distance Ladder

Globular Clusters M15

They have different apparent brightness
They have different colors
They move
They change in brightness

Need brighter "standard candle"

Intensity =
$$\frac{\text{Luminosity}}{4\pi R^2}$$

- Other variable stars are brighter: Cepheid Stars (Polaris is a Cepheid)
- Cepheid stars are identified because their light output changes regularly on a time scale of weeks to months. They are very rare.
- They are brighter than the sun by about a factor of 10,000 but are <u>not</u> standard candles.

Cepheid Variable Stars

Henrietta Leavitt 1868 - 1921

Light curve of Delta Cephei

Cepheids as distance indicators

For cepheids of known distance

Measure apparent magnitude of the cepheids

$$I = \frac{L}{4\pi R^2} \to \operatorname{know} L$$

- Measure period of the cepheids
- Calibrate (if know period know L)

For cepheids of unknown distance

- Measure period....know L
- Measure apparent magnitude

$$I = \frac{L}{4\pi R^2} \to \operatorname{know} R$$

The Cosmological 10 Mpc Distance Ladder 10 kpc few kpc ~100 pc Cepheids nearby stars 1 AU main sequence RR Lyrae parallax) (geometry) (geometry) Sun (geometry) Moon & clusters Earth

Large Magellanic Cloud 100 million stars 55 kpc distant

Milky Way Galaxy

A view of the universe, circa 1903 A.D.

Kapteyn Universe

- 1) **Composition**: Starz' in the 'hood
- 2) Arrangement:

3) **Origin**: ?

Heber Curtis 1872 - 1942

Harlow Shapley 1885 - 1972

Edwin Hubble 1884 - 1953

University of Chicago 1909 National Champions

100-inch Hooker Telescope on Mt. Wilson

Hubble's Hooker Chair

Einstein at Yerkes, May 6, 1921

6-0ct 1923